事件驱动编程、消息驱动编程、数据驱动编程

事件驱动

事件驱动机制就是:
让驴拉磨,它不拉,你用鞭抽一下,它就开始拉了。然后又停了,你再抽一下,它又继续拉了
这叫用“鞭”驱动“驴”拉磨

在程序里,程序停止在那不动,你点击一个按钮,它就有反应了,过一会,又没反应了,你再点一下,它又继续运行。
这叫用“事件”驱动“程序”运行

0. 基本概念

窗口/组件

事件

消息(队列)

事件响应(服务处理程序)

调度算法

进程/线程

非阻塞I/O

程序的执行可以看成对CPU,内存,IO资源一次占用

现代操作系统支持多任务,可以分时复用上述资源.

1. 为什么采用事件驱动模型?

事件驱动模型也就是我们常说的观察者,或者发布-订阅模型;理解它的几个关键点:

首先是一种对象间的一对多的关系;最简单的如交通信号灯,信号灯是目标(一方),行人注视着信号灯(多方);

当目标发送改变(发布),观察者(订阅者)就可以接收到改变;

观察者如何处理(如行人如何走,是快走/慢走/不走,目标不会管的),目标无需干涉;所以就松散耦合了它们之间的关系。

2. 代码执行流程

在传统的或“过程化”的应用程序中,应用程序自身控制了执行哪一部分代码和按何种顺序执行代码。从第一行代码执行程序并按应用程序中预定的路径执行,必要时调用过程。 在事件驱动的应用程序中,代码不是按照预定的路径执行-而是在响应不同的事件时执行不同的代码片段。事件可以由用户操作触发、也可以由来自操作系统或其它应用程序调度算法的消息触发、甚至由应用程序本身的消息触发。这些事件的顺序决定了代码执行的顺序,因此应用程序每次运行时所经过的代码的路径都是不同的。

3. 事件驱动模型

在UI编程中,常常要对鼠标点击进行相应,首先如何获得鼠标点击呢?

方式一:创建一个线程,该线程一直循环检测是否有鼠标点击,那么这个方式有以下几个缺点:

CPU资源浪费,可能鼠标点击的频率非常小,但是扫描线程还是会一直循环检测,这会造成很多的CPU资源浪费;如果扫描鼠标点击的接口是阻塞的呢?

如果是堵塞的,又会出现下面这样的问题,如果我们不但要扫描鼠标点击,还要扫描键盘是否按下,由于扫描鼠标时被堵塞了,那么可能永远不会去扫描键盘;

如果一个循环需要扫描的设备非常多,这又会引来响应时间的问题;所以,该方式是非常不好的。

方式二:就是事件驱动模型目前大部分的UI编程都是事件驱动模型,如很多UI平台都会提供onClick()事件,这个事件就代表鼠标按下事件。事件驱动模型大体思路如下:

有一个事件(消息)队列;

鼠标按下时,往这个队列中增加一个点击事件(消息);

有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;

事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;如图:

4. 事件驱动处理库

select

poll

epoll

libev

消息驱动

事件驱动机制跟消息驱动机制相比

消息驱动和事件驱动很类似,都是先有一个事件,然后产生一个相应的消息,再把消息放入消息队列,由需要的项目获取。他们的区别是消息是谁产生的

消息驱动:鼠标管自己点击不需要和系统有过多的交互,消息由系统(第三方)循环检测,来捕获并放入消息队列。消息对于点击事件来说是被动产生的,高内聚。

事件驱动:鼠标点击产生点击事件后要向系统发送消息“我点击了”的消息,消息是主动产生的。再发送到消息队列中。

事件:按下鼠标,按下键盘,按下游戏手柄,将U盘插入USB接口,都将产生事件。比如说按下鼠标左键,将产生鼠标左键被按下的事件。

消息:当鼠标被按下,产生了鼠标按下事件,windows侦测到这一事件的发生,随即发出鼠标被按下的消息到消息队列中,这消息附带了一系列相关的事件信息,比如鼠标哪个键被按了,在哪个窗口被按的,按下点的坐标是多少?如此等等。

  1. 要理解事件驱动和程序,就需要与非事件驱动的程序进行比较。实际上,现代的程序大多是事件驱动的,比如多线程的程序,肯定是事件驱动的。早期则存在许多非事件驱动的程序,这样的程序,在需要等待某个条件触发时,会不断地检查这个条件,直到条件满足,这是很浪费cpu时间的。而事件驱动的程序,则有机会释放cpu从而进入睡眠态(注意是有机会,当然程序也可自行决定不释放cpu),当事件触发时被操作系统唤醒,这样就能更加有效地使用cpu.
  2. 再说什么是事件驱动的程序。一个典型的事件驱动的程序,就是一个死循环,并以一个线程的形式存在,这个死循环包括两个部分,第一个部分是按照一定的条件接收并选择一个要处理的事件,第二个部分就是事件的处理过程。程序的执行过程就是选择事件和处理事件,而当没有任何事件触发时,程序会因查询事件队列失败而进入睡眠状态,从而释放cpu。
  3. 事件驱动的程序,必定会直接或者间接拥有一个事件队列,用于存储未能及时处理的事件。
  4. 事件驱动的程序的行为,完全受外部输入的事件控制,所以,事件驱动的系统中,存在大量这种程序,并以事件作为主要的通信方式。
  5. 事件驱动的程序,还有一个最大的好处,就是可以按照一定的顺序处理队列中的事件,而这个顺序则是由事件的触发顺序决定的,这一特性往往被用于保证某些过程的原子化。
  6. 目前windows,linux,nucleus,vxworks都是事件驱动的,只有一些单片机可能是非事件驱动的。

事件模式耦合高,同模块内好用;消息模式耦合低,跨模块好用。事件模式集成其它语言比较繁琐,消息模式集成其他语言比较轻松。事件是侵入式设计,霸占你的主循环;消息是非侵入式设计,将主循环该怎样设计的自由留给用户。如果你在设计一个东西举棋不定,那么你可以参考win32的GetMessage,本身就是一个藕合度极低的接口,又足够自由,接口任何语言都很方便,具体应用场景再在其基础上封装成事件并不是难事,接口耦合较低,即便哪天事件框架调整,修改外层即可,不会伤经动骨。而如果直接实现成事件,那就完全反过来了。

什么是数据驱动编程

最近在学习《Unix编程艺术》。以前粗略的翻过,以为是介绍unix工具的。现在认真的看了下,原来是介绍设计原则的。它的核心就是第一章介绍的unix的哲学以及17个设计原则,而后面的内容就是围绕它来展开的。以前说过,要学习适合自己的资料,而判断是否适合的一个方法就是看你是否能够读得下去。我对这本书有一种相见恨晚的感觉。推荐有4~6年工作经验的朋友可以读一下。

正题

作者在介绍Unix设计原则时,其中有一条为“表示原则:把知识叠入数据以求逻辑质朴而健壮”。结合之前自己的一些经验,我对这个原则很有共鸣,所以先学习了数据驱动编程相关的内容,这里和大家分享出来和大家一起讨论。

数据驱动编程的核心

数据驱动编程的核心出发点是相对于程序逻辑,人类更擅长于处理数据。数据比程序逻辑更容易驾驭,所以我们应该尽可能的将设计的复杂度从程序代码转移至数据。

真的是这样吗?让我们来看一个示例。

假设有一个程序,需要处理其他程序发送的消息,消息类型是字符串,每个消息都需要一个函数进行处理。第一印象,我们可能会这样处理:

void msg_proc(const char *msg_type, const char *msg_buf) 
{ 
    if (0 == strcmp(msg_type, "inivite")) 
    { 
        inivite_fun(msg_buf); 
    } 
    else if (0 == strcmp(msg_type, "tring_100")) 
    { 
        tring_fun(msg_buf); 
    } 
    else if (0 == strcmp(msg_type, "ring_180")) 
    { 
        ring_180_fun(msg_buf); 
    } 
    else if (0 == strcmp(msg_type, "ring_181")) 
    { 
        ring_181_fun(msg_buf); 
    } 
    else if (0 == strcmp(msg_type, "ring_182")) 
    { 
        ring_182_fun(msg_buf); 
    } 
    else if (0 == strcmp(msg_type, "ring_183")) 
    { 
        ring_183_fun(msg_buf); 
    } 
    else if (0 == strcmp(msg_type, "ok_200")) 
    { 
        ok_200_fun(msg_buf); 
    } else if (0 == strcmp(msg_type, "fail_486")) 
    { 
        fail_486_fun(msg_buf); 
    } else { 
        log("未识别的消息类型%s\n", msg_type); 
    } 
} 

上面的消息类型取自sip协议(不完全相同,sip协议借鉴了http协议),消息类型可能还会增加。看着常常的流程可能有点累,检测一下中间某个消息有没有处理也比较费劲,而且,没增加一个消息,就要增加一个流程分支。

按照数据驱动编程的思路,可能会这样设计:

typedef void (*SIP_MSG_FUN)(const char *);

typedef struct __msg_fun_st 
{ 
    const char *msg_type;//消息类型 
    SIP_MSG_FUN fun_ptr;//函数指针 
}msg_fun_st;

msg_fun_st msg_flow[] = 
{ 
        {"inivite", inivite_fun}, 
        {"tring_100", tring_fun}, 
        {"ring_180", ring_180_fun}, 
        {"ring_181", ring_181_fun}, 
        {"ring_182", ring_182_fun}, 
        {"ring_183", ring_183_fun}, 
        {"ok_200", ok_200_fun},

        。。。。。。 
        {"fail_486", fail_486_fun} 
};

void msg_proc(const char *msg_type, const char *msg_buf) 
{ 
    int type_num = sizeof(msg_flow) / sizeof(msg_fun_st); 
    int i = 0;

    for (i = 0; i < type_num; i++) 
    { 
        if (0 == strcmp(msg_flow[i].msg_type, msg_type)) 
        { 
            msg_flow[i].fun_ptr(msg_buf); 
            return ; 
        } 
    } 
    log("未识别的消息类型%s\n", msg_type); 
} 

下面这种思路的优势

1、可读性更强,消息处理流程一目了然。

2、更容易修改,要增加新的消息,只要修改数据即可,不需要修改流程。

3、重用,第一种方案的很多的else if其实只是消息类型和处理函数不同,但是逻辑是一样的。下面的这种方案就是将这种相同的逻辑提取出来,而把容易发生变化的部分提到外面。

隐含在背后的思想

很多设计思路背后的原理其实都是相通的,隐含在数据驱动编程背后的实现思想包括:

1、控制复杂度。通过把程序逻辑的复杂度转移到人类更容易处理的数据中来,从而达到控制复杂度的目标。

2、隔离变化。像上面的例子,每个消息处理的逻辑是不变的,但是消息可能是变化的,那就把容易变化的消息和不容易变化的逻辑分离。

3、机制和策略的分离。和第二点很像,本书中很多地方提到了机制和策略。上例中,我的理解,机制就是消息的处理逻辑,策略就是不同的消息处理(后面想专门写一篇文章介绍下机制和策略)。

数据驱动编程可以用来做什么

如上例所示,它可以应用在函数级的设计中。

同时,它也可以应用在程序级的设计中,典型的比如用表驱动法实现一个状态机(后面写篇文章专门介绍)。

也可以用在系统级的设计中,比如DSL(这方面我经验有些欠缺,目前不是非常确定)。

它不是什么

1、 它不是一个全新的编程模型:它只是一种设计思路,而且历史悠久,在unix/linux社区应用很多;

2、它不同于面向对象设计中的数据:“数据驱动编程中,数据不但表示了某个对象的状态,实际上还定义了程序的流程;OO看重的是封装,而数据驱动编程看重的是编写尽可能少的代码。”

书中的值得思考的话

数据压倒一切。如果选择了正确的数据结构并把一切组织的井井有条,正确的算法就不言自明。编程的核心是数据结构,而不是算法。——Rob Pike

程序员束手无策。。。。。只有跳脱代码,直起腰,仔细思考数据才是最好的行动。表达式编程的精髓。——Fred Brooks

数据比程序逻辑更易驾驭。尽可能把设计的复杂度从代码转移至数据是个好实践。——《unix编程艺术》作者。

转载自:学时网 » 事件驱动编程、消息驱动编程、数据驱动编程